137 research outputs found

    Towards a neural hierarchy of time scales for motor control

    Get PDF
    Animals show remarkable rich motion skills which are still far from realizable with robots. Inspired by the neural circuits which generate rhythmic motion patterns in the spinal cord of all vertebrates, one main research direction points towards the use of central pattern generators in robots. On of the key advantages of this, is that the dimensionality of the control problem is reduced. In this work we investigate this further by introducing a multi-timescale control hierarchy with at its core a hierarchy of recurrent neural networks. By means of some robot experiments, we demonstrate that this hierarchy can embed any rhythmic motor signal by imitation learning. Furthermore, the proposed hierarchy allows the tracking of several high level motion properties (e.g.: amplitude and offset), which are usually observed at a slower rate than the generated motion. Although these experiments are preliminary, the results are promising and have the potential to open the door for rich motor skills and advanced control

    Determination of iodine value of palm oil based on triglyceride composition

    Get PDF
    The triglyceride (TG) composition of palm oil is normally determined by high-performance liquid chromatography (HPLC). The HPLC chromatograms indicated a good separation of most of the TG components in the oil. The TG can be classified based on either the TG groups, i.e., triunsaturated, monosaturated, disaturated, or trisaturated, or the number of double bonds, i.e., zero, one, two, three, or four double bonds. The more unsaturated the fatty acid, the greater the iodine value (IV). Therefore, it is hypothesized that the IV of an oil can be determined based upon the TG composition of the oil. Based on the TG groups, stepwise regression analysis showed that the areas of the disaturated, trisaturated, and triunsaturated TG peaks could predict the IV with a coefficient of determination (R2) of 0.990. The regression based on the number of double bonds yielded a good regression equation with R2=0.992. The important variables were the peak area of the fatty acids that contained zero, one, two, and three double bonds. This study concludes that the TG composition can be used to predict the IV of palm oil. The best prediction model is obtained by using the number of double bonds in the TG as the independent variable

    Lipid-lowering therapy and risk-based LDL-C goal attainment in Belgium: DA VINCI observational study

    Get PDF
    Background Cardiovascular disease (CVD) is one of the leading causes of death in Belgium. Current strategies for the prevention and management of CVD focus on reducing low-density lipoprotein cholesterol (LDL-C) levels. This analysis assessed whether LDL-C goals, recommended by the European Society of Cardiology (ESC)/European Atherosclerosis Society (EAS) guidelines, were being achieved in a Belgian study population. Methods The cross-sectional, observational, DA VINCI study enrolled patients prescribed lipid-lowering therapy (LLT) between 21 June 2017 and 20 November 2018. Data for patients from Belgium were extracted for this country-specific analysis. Primary endpoint was the proportion of patients who achieved 2016 ESC/EAS risk-based LDL-C goals; attainment of 2019 risk-based LDL-C goals was evaluated post hoc. Results Of 497 enrolled patients, 41% were female and mean age was 68 years. Among subjects with an LDL-C measurement on stabilised LLT, moderate-intensity statin monotherapy was the most prescribed LLT regimen (59%). Overall, 63% of patients achieved their risk-based LDL-C goals according to the 2016 ESC/EAS guidelines. Among patients with established ASCVD, risk-based LDL-C goal attainment was higher in patients with peripheral arterial disease (53%) than patients with coronary (37%) and cerebrovascular disease (42%). According to the updated 2019 ESC/EAS guidelines, less than half (41%) of patients achieved their risk-based LDL-C goal. The proportion of primary and secondary prevention patients who achieved 2019 risk-based LDL-C goals was 59% and 18%, respectively. Conclusion These findings reveal a large gap between the LDL-C goals advocated by the ESC/EAS and the levels achieved in routine clinical practice in Belgium

    Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions

    Get PDF
    Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hydrothermally pretreated Eucalyptus globulus wood (EGW) was studied under combined diverse stress operating conditions (3038 °C, 6080 g of liquor from hydrothermal treatment or autohydrolysis (containing inhibitor compounds)/100 g of liquid and liquid to solid ratio between 4 and 6.4 g liquid in SSF/g unwashed pretreated EGW) using an industrial Saccharomyces cerevisiae strain supplemented with low-cost byproducts derived from agro-food industry. Evaluation of these variables revealed that the combination of temperature and higher solid loadings was the most significant variable affecting final ethanol concentration and cellulose to ethanol conversion, whereas solid and autohydrolysis liquor loadings had the most significant impact on ethanol productivity. After optimization, an ethanol concentration of 54 g/L (corresponding to 85 % of conversion and 0.51 g/Lh of productivity at 96 h) was obtained at 37 °C using 60 % of autohydrolysis liquor and 16 % solid loading (liquid to solid ratio of 6.4 g/g). The selection of a suitable strain along with nutritional supplementation enabled to produce noticeable ethanol titers in quite restrictive SSF operating conditions, which can reduce operating cost and boost the economic feasibility of lignocellulose-to-ethanol processes.The authors thank the financial support from the Strategic Project of UID/BIO/04469/2013 CEB Unit and A Romaní postdoctoral grant funded by Xunta of Galicia (Plan I2C, 2014)

    Reservoir computing quality : connectivity and topology

    Get PDF
    We explore the effect of connectivity and topology on the dynamical behaviour of Reservoir Computers. At present, considerable effort is taken to design and hand-craft physical reservoir computers. Both structure and physical complexity are often pivotal to task performance, however, assessing their overall importance is challenging. Using a recently developed framework, we evaluate and compare the dynamical freedom (referring to quality) of neural network structures, as an analogy for physical systems. The results quantify how structure affects the behavioural range of networks. It demonstrates how high quality reached by more complex structures is often also achievable in simpler structures with greater network size. Alternatively, quality is often improved in smaller networks by adding greater connection complexity. This work demonstrates the benefits of using dynamical behaviour to assess the quality of computing substrates, rather than evaluation through benchmark tasks that often provide a narrow and biased insight into the computing quality of physical systems

    Fractionation of eucalyptus globulus wood by glycerol-water pretreatment: optimization and modeling

    Get PDF
    A glycerol-organosolv process can be a good alternative for Eucalyptus wood fractionation into its main compounds, improving the enzymatic saccharification of the cellulose. A study of process variables - glycerol−water percent content, temperature, and process time - was carried out using a Box-Behnken experimental design. The cellulose obtained from pretreated solids was recovered almost quantitatively, leading to a solid with a high percentage of cellulose (77 g/100 g of pretreated solid), low lignin content (9 g/100 g of pretreated solid), and 18% of residual hemicellulose in the solid at 200 °C, 56% of glycerol−water and 69 min. The enzymatic saccharification was enhanced achieving 98% cellulose-to-glucose conversion (under conditions: liquid to solid ratio 20 g/g and enzyme loading 20 FPU/g of solid). This study contributes to the improvement of biomass fractionation by exploring an eco-friendly treatment which allows for almost complete wood fractionation into constituents and high levels of glucose recovery available for subsequent yeast fermentation to bioethanol.The authors A. Romani and F. B. Pereira thank to the Portuguese Foundation for Science and Technology (FCT, Portugal) for their fellowships (grant number: SFRH/BPD/77995/2011 and SFRH/BD/64776/2009, respectively)

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies
    corecore